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Abstract

Reliable estimates of contaminant transport parameters are of great importance for arriving at
effective remedial measures for groundwater decontamination. The transport parameters are usually
estimated by conducting column experiments on saturated soil columns and the optimal parameters
are obtained by using a suitable optimization technique. In the present study, the applicability of
Genetic Algorithm (GA) optimization technique is assessed in estimating the transport parameters.
For this purpose, the genetic algorithms technique is coupled with the McCormack scheme based
numerical technique for solving Advection — Dispersion equation in Groundwater. The results
indicate that GA technique is an efficient and reliable technique for estimating the transport
parameters. GA avoids the subjectivity, large computational time and ill-posed ness often associated

with conventional optimization techniques.

Introduction

Groundwater is a valuable natural resource of water which is being used extensively for
drinking, irrigation and industrial purposes. Due to the increase in population and rapid
industrialization, this resource has been increasingly contaminated. The main sources of ground
water contamination are waste disposal sites, industrial effluents, agricultural and urban watersheds
[Ward and Giger, 1985]. Mathematical models have been effectively used to study the transport of
contaminants in groundwater and to take appropriate measures for remediation [Charbeneau, 2000].
With greater model sophistication comes a need for more intensive data requirements and precision
in model prediction hinge on our ability to accurately determine the model parameter [Kool et al.,
1987]. The transport parameters of a soil medium are commonly determined by imposing restrictive
initial and boundary conditions so that the governing equations can be inverted by analytical or
semi-analytical methods. However, these direct inversion methods also have a number of limitations

which restrict their practicality, in particular when used for calibrating field scale models. The direct

'Undergraduate Student, Department of Civil Engg., Indian Institute of Technology, Roorkee.
2Associate Professor, Department of Civil Engg., Indian Institute of Technology, Roorkee.
*Doctoral Student, Department of Civil Engg., Indian Institute of Technology, Roorkee.



methods are time consuming and hence costly owing to the need to meet conditions requisite for the
explicit calculation of model parameters. An alternative and more flexible approach to solving the
inverse problem is to employ parameter estimation techniques. In such an approach, the model
parameters are estimated by minimizing the deviations between the model predicted and field
observed output. Contrary to direct methods, the optimization approach does not put any inherent
constraint on the form of complexity of the model, on the stipulation of initial and boundary
conditions. Thus a major advantage is that experimental conditions can be selected on the basis of
convenience and expeditiousness. Variety of optimization techniques such as Steepest Descent,
Newton’s method, Quasi Newton’s method, Conjugate Gradient methods have been used to estimate
the flow and transport parameters [ Kool and Parker 1988, Kool et al., 1987]. Most of these
techniques involve the computation of first derivative of the objective function which some times
may not be accurate or are difficult to evaluate. In addition, these traditional methods have the
tendency to converge to local minimum. Recently, non traditional optimization algorithms such as
Genetic algorithms have been effectively used as optimization tools in water resources [McKinney
and Lin (1994)]. Genetic algorithms are heuristic (non exact), probabilistic (stochastic),
Combinatorial (discrete) search based optimization techniques and the continuing price/performance
improvements of computational systems have made them attractive for various types of optimization
problems [Samuel and Jha, 2003]. In the present study, genetic algorithms have been used to

estimate the transport parameters in this present work.
Contaminant Transport in one Dimension

The one dimensional form of advection-dispersion equation for non reactive dissolved
constituent in saturated, homogeneous, isotropic material under steady state uniform flow is
described by (Charbeneau, 2000)

where ¢ is concentration of contaminant (ML™). D is the hydrodynamic dispersion coefficient, v is
fluid velocity (LT™), x is the spatial coordinate (L) and t is the time coordinate (T). Usually D is
expressed in terms of two components (Bear, 1972) as

D=D,+a.Vv (2



where D, is the coefficient of molecular diffusion (L%T) and a, is the longitudinal dispersivity (L).

Initial and Boundary Conditions

Eqgn. (1) needs the initial and boundary conditions to obtain a unique solution for a particular
problem. Initially, before the injection of a contaminant, the concentration in the domain is assumed
to be zero.
ie. t=0,c=0,0<x<0 3
At time t = 0, a contaminant with concentration c, is added at the inlet boundary, i.e.,

t>0, c=c,, Xx=0 (4)
Further, it is assumed that for away from the source, the ground water is not contaminated, i.e.,

t>0, c=0, x> ®)
Solution of eqns. (1) subject to egns. (3) to (5) provide the variation of contaminant concentration as
a function of space and time. Many analytical and numerical solutions are available in literature for
solving eqgn. (1) [Ogata and Banks, (1961), Chaudhury (1993)]. Recently Pradeep Verma et al.,
(2006) developed a MacCormack scheme based numerical model for solving eqgn. (1), which

provides accurate results for wide range of Peclet numbers and is discussed below.

Numerical Solution

The numerical solution is carried out in two steps. First, the advective part is solved using
MacCormack scheme to get the nodal advective concentrations in the solution domain. The nodal
advective concentrations so obtained are used in the dispersive part as source/sink terms to obtain
the final concentrations [Pradeep Verma et al., 2006]. The procedure is described in detail in the

following section.

Solution of the Advective Part

Figure 1 shows the nodal representation to describe the MacCormack scheme.
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Figure 1 — Nodal representation of MacCormack scheme

For a typical interior node ‘i’, the predictor and corrector steps of the MacCormack scheme can be
written as: [Chaudhry (1993), Bhallamudi and Singh (1996)]
Predictor: (Using Forward difference)

C/ -Cf C -Cf,
=V
At AX

] C. being the predicted concentration. (6)

Corrector: (Using Backward difference)

cr-ci _

C* - C* *k . -
T —V{LJ C, is the corrector concentration. (7)

AX

Hence, the corrected value of advective concentration at unknown time level ,C*"is given by,

acik+1 _ %(C_** + C_k) (8)

In Egs. (6) to (8), superscript ‘k” denotes the time level at which the solution is known and ‘k+1’
denotes the time level at which solution is sought, 4x is the spatial grid size and At is the time
increment. For the spatial derivative, backward-differencing is used in the predictor step and
forward-differencing is used in the corrector step. MacCormack scheme is an explicit scheme and its
stability is governed by the Courant number « which is defined as

At
a=V— 9
g 9)

MacCormack scheme is stable for o <1.

Solution of Dispersive Part:



The dispersive part is written as
2
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For a typical interior node, a fully implicit finite difference scheme for the solution of dispersive part

0 (10)

can be written as

k+1 k+1 k+1 k+1 k+1
dCi " a Ci -D dC' _2dci *q Ci—l

i+1

At ' (AX)? =0 (1)

It should be noted that in Egn.(11), the advective concentration obtained from MacCormack scheme
is used in the time derivative term which acts as sink term. Rearranging Eqn.(11) to bring all the

unknown terms on the left hand side and all the known terms on the right hand side, one gets

(_ D, . jcilf&l " (i _ziszCikﬂ + (_ D, . jCikIl :[_ ijacikﬂ (12)
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The parameter that characterizes the effect of dispersion is the Peclet number which is defined as

UAX
p -2~ 13
C DS ( )

Computationally, a flow is considered to be dispersion dominated if P < 1 and advection dominated
if Pc> 5 (Anderson, 1979).

Inverse Problem

Knowing the parameters a,, D and v eqn. (1) can be solved either analytically or

m

numerically to obtain the solute concentrations as a function of space and time. This constitutes the

forward problem. In contrast, the inverse problem involves the estimation of the parameters a,, D

and v from the observed concentration data in an experiment. Inverse procedure consists of
estimating the model parameters iteratively such that the deviation between the model predicted
concentrations and those observed for a stipulated initial and boundary conditions, is minimized.
Formulation of objective Function

The objective function (fitness function in Genetic algorithm terminology) is defined as the

sum of the squares of difference between the models’ predicted and experimentally observed

contaminant concentrations. If, cf}bs is the experimentally observed concentration at time t; and at



location X, and cHre is the corresponding model predicted concentrations, then the fitness function

SSD can be defined as

ssozzlj i(c;}bs - cig’fe)2 (14)

i=1 j=1
where 1,J is the total number of time and space observations respectively. In egn. (14), cgredepend

on the model parameters v and D for a stipulated initial v and D boundary conditions.

Estimation of Transport Parameters

The parameter a,, D,, and v are estimated by minimizing the fitness function (14). In the

present study, genetic algorithm optimization technique is used to estimate these parameters. Genetic
algorithms are computerized search and optimization algorithms based on the mechanics of natural
selection and natural genetics [Goldberg, 1989]. Genetic algorithms are robust search methods that
seek to reproduce mathematically the mechanisms of natural selection and population genetics

according to the biological processes of survival and adaptation.

Genetic Representation

Initially, a population of parameters proportional to the total string length is generated using
a random generator. Generally, genetic algorithms have been developed by using binary coding in
which a string (or chromosome) is represented by a string of binary bits that can encode integers,
real numbers. In this study, the parameters are encoded as substrings of binary digits having a
specific length. These substrings are joined together to form longer strings representing a solution.
The length of the substring (i) is determined according to the desired solution accuracy and is
dependent on the range of the parameter and the precision requirement of the parameter. McKinney

and Lin (1994), gave the relationship between the substring length and the obtainable precision as

(D, —C,)10% <2' -1 (15)
Where, iy = desired precision for the jth parameter, i is the substring length, C, and D, = lower

and upper bounds of the kth parameter, k = index for the parameter:

The value of k" parameter is decoded using the following equation.



Z, =Cy +[(D, =Cy) /(2" —1)]Z|:|j 2! (16)
j=0

Where Z, = value of kth parameter and I; = binary digit at the jth position in the string starting from

right. Once the initial population is randomly generated, the fitness of each string is determined

using eqn. (16).

Reproduction

The string generated in the initial population is chosen for participation in the reproduction
process based on their fitness values. Many selection schemes such as deterministic sampling,
stochastic sampling with or without replacement, stochastic tournament selection and fitness
proportionate selection, are used for reproduction (Goldberg, 1989). In this work, the fitness
proportionate selection is chosen, where a string is selected for the reproduction process with a

probability proportional to its fitness. Thus the probability p; of an individual member string i

being selected is given by

S.
P = (7)
=)

Si

where s, = fitness of individual string i, and p is the population size. The scheme is implemented

with the simulation of a roulette wheel with its circumference marked for each string proportionate
to the string’s fitness. The roulette wheel is rotated p times, each time selecting a copy of the string

chosen by the roulette wheel printer. As the circumference of the wheel is marked according to a

string’s fitness, the roulette wheel mechanism makes % copies of the ith string in the re
mean

production where S,,..,, IS the average fitness of the population given as

1P
Smeanz_z‘,si (18)
Piz

The string with a higher fitness value represents a larger range in the cumulative probability values,

and hence has a higher probability of being copies into the mating pool.



Mating (Cross over)

The general theory behind the cross over operation is that by exchanging important building
blocks between two strings that perform well, the GA attempts to create new strings that preserve the
best material from two parent strings. The cross over is a recombinant operator that selects two
strings from the mating pool at random and cuts their bits at a randomly chosen position. This
produces two “head” segments and two “tail” segments. The tail segments are then swapped over to
produce two new full length strings. The number of strings participating in mating depends on cross
over probability. If a cross over probability of p. is used, only 100 x p. percent strings in the
population are used in the cross over operation. Cross over has a wide range of possible types, i.e.,
one point, multipoint, uniform, intermediate arithmetical and entered arithmetical (Goldberg 1989).

The effect of cross over depends on the site at which cross over takes place.

Mutation

Mutation is an important process that permits new genetic material to be introduced to a
population. A mutation probability is specified that permits random mutations to be made to
individual genes (e.g. changing 1 to 0 and vice versa for binary GAs). Mutation operator facilities
the convergence towards an optimal solution even if initial population is far from the optimal
solution. The binary GAs used mutation probability at very low rates ranging from 0.001 to 0.01.
Fig. 3 shows the flow chart of the estimation of transport parameters usually Genetic algorithms. A

computer code is written in C language to implement the algorithm.
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Results and Discussion
In order to evaluate the performance of the genetic algorithm assisted parameter estimation
technique, hypothetical transient concentration data is generated for different values of the

parameters a,, D, and v. For the generation of concentrations data, initially the concentration in
groundwater is assumed to be zero. A continuous source concentration (C,) of 100 mg/l is applied

at one end of the domain and transient concentration data is generated. The data generated involve
both advective and dispersive dominated concentration profiles. [Hari Prasad et al. 2004]. Table 1
presents the different cases considered in the study along with the corresponding true values of the

parameters a ;v and D,, used for generating data.

Table 1: True values of parameters used for Concentration Data Generation

a_ (cm) v (cm/day) | Dn (cm?/day)
Case 1 0.05 4 2
Case 2 0.05 60 2
Case 3 15 4 2
Case 4 15 60 2

Transient concentration data is generated for all the four cases and these data is used in
estimating the parameters using Genetic Algorithms. The genetic algorithm parameters used in
optimization are: population size = 100; String length = 60; Number of Generations = 100; Mutation
probability = 0.01.

Table 2 presents the parameter estimation details for the four cases considered. It is clear
from Table 2 that the parameter estimates obtained from the Genetic algorithms are almost identical
to the true values of the parameters. Figs. 3 to 6 show the comparison of model predicted
concentrations using the optimum parameters with the observed concentrations for all the four cases.
It can be seen from Figs. 3 to 6 that model predicted concentrations match very well with the
observed concentrations resulting in minimum residual mean square error (RMS error). Thus, it can
be concluded that genetic algorithms are robust in estimating solute transport parameters and can be

used as an effective tool for parameter estimation.
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Table 2: Parameter Estimates by Genetic Algorithms

Parameter True value Estimated value
Case 1
a_ (cm) 0.05 0.0498
v (cm/day) 4 4.0001
Dm (cm?/day) 2 2.0005
RMS Error = 0.0032 (mg/l)?
Case 2
a. (cm) 0.05 0.05001
v (cm/day) 60 60.0007
D (cm?/day) 2 1.9998
RMS Error = 0.0026 (mg/l)*
Case 3
a_ (cm) 15 14.9997
v (cm/day) 4 4.0003
D (cm*/day) 2 1.9997
RMS Error = 0.0028 (mg/l)®
Case 4
a. 15 15.0003
Vv 60 60.0002
Dm 2 2.0002
RMS Error = 0.0022 (mg/l)*
Conclusions

In the present study, the applicability of Genetic Algorithm (GA) optimization technique is
assessed in estimating the groundwater contaminant transport parameters. For this purpose, the
genetic algorithms technique is coupled with the McCormack scheme based numerical technique for
solving Advection — Dispersion equation in Groundwater. The performance of the genetic algorithm

based optimization technique is studies by estimating the transport parameters a, , D, and v from

synthetically generated transient concentration data. The data includes both advective and dispersive

11




dominated data. It is observed that in all the cases, parameters estimated by genetic algorithms are

almost identical to the true values. The results indicate that GA technique is an efficient and reliable

technique for estimating the transport parameters. GA avoids the subjectivity, large computational

time and ill-posed ness often associated with conventional optimization technique.
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