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Abstract 

 

 Reliable estimates of contaminant transport parameters are of great importance for arriving at 

effective remedial measures for groundwater decontamination. The transport parameters are usually 

estimated by conducting column experiments on saturated soil columns and the optimal parameters 

are obtained by using a suitable optimization technique. In the present study, the applicability of 

Genetic Algorithm (GA) optimization technique is assessed in estimating the transport parameters. 

For this purpose, the genetic algorithms technique is coupled with the McCormack scheme based 

numerical technique for solving Advection – Dispersion equation in Groundwater. The results 

indicate that GA technique is an efficient and reliable technique for estimating the transport 

parameters. GA avoids the subjectivity, large computational time and ill-posed ness often associated 

with conventional optimization techniques.        

 

Introduction 

 

 Groundwater is a valuable natural resource of water which is being used extensively for 

drinking, irrigation and industrial purposes. Due to the increase in population and rapid 

industrialization, this resource has been increasingly contaminated. The main sources of ground 

water contamination are waste disposal sites, industrial effluents, agricultural and urban watersheds 

[Ward and Giger, 1985]. Mathematical models have been effectively used to study the transport of 

contaminants in groundwater and to take appropriate measures for remediation [Charbeneau, 2000]. 

With greater model sophistication comes a need for more intensive data requirements and precision 

in model prediction hinge on our ability to accurately determine the model parameter [Kool et al., 

1987]. The transport parameters of a soil medium are commonly determined by imposing restrictive 

initial and boundary conditions so that the governing equations can be inverted by analytical or 

semi-analytical methods. However, these direct inversion methods also have a number of limitations 

which restrict their practicality, in particular when used for calibrating field scale models. The direct  
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methods are time consuming and hence costly owing to the need to meet conditions requisite for the 

explicit calculation of model parameters. An alternative and more flexible approach to solving the 

inverse problem is to employ parameter estimation techniques. In such an approach, the model 

parameters are estimated by minimizing the deviations between the model predicted and field 

observed output. Contrary to direct methods, the optimization approach does not put any inherent 

constraint on the form of complexity of the model, on the stipulation of initial and boundary 

conditions. Thus a major advantage is that experimental conditions can be selected on the basis of 

convenience and expeditiousness. Variety of optimization techniques such as Steepest Descent, 

Newton’s method, Quasi Newton’s method, Conjugate Gradient methods have been used to estimate 

the flow and transport parameters [ Kool and Parker 1988, Kool et al., 1987]. Most of these 

techniques involve the computation of first derivative of the objective function which some times 

may not be accurate or are difficult to evaluate. In addition, these traditional methods have the 

tendency to converge to local minimum. Recently, non traditional optimization algorithms such as 

Genetic algorithms have been effectively used as optimization tools in water resources [McKinney 

and Lin (1994)]. Genetic algorithms are heuristic (non exact), probabilistic (stochastic), 

Combinatorial (discrete) search based optimization techniques and the continuing price/performance 

improvements of computational systems have made them attractive for various types of optimization 

problems [Samuel and Jha, 2003]. In the present study, genetic algorithms have been used to 

estimate the transport parameters in this present work. 

 

Contaminant Transport in one Dimension 

  

The one dimensional form of advection-dispersion equation for non reactive dissolved 

constituent in saturated, homogeneous, isotropic material under steady state uniform flow is 

described by (Charbeneau, 2000) 
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where c is concentration of contaminant (ML
-3

). D is the hydrodynamic dispersion coefficient, v  is 

fluid velocity (LT
-1

), x is the spatial coordinate (L) and t is the time coordinate (T). Usually D is 

expressed in terms of two components (Bear, 1972) as  

vaDD Lm            (2) 
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where Dm is the coefficient of molecular diffusion (L
2
/T) and aL is the longitudinal dispersivity (L). 

 

Initial and Boundary Conditions 

 

 Eqn. (1) needs the initial and boundary conditions to obtain a unique solution for a particular 

problem. Initially, before the injection of a contaminant, the concentration in the domain is assumed 

to be zero. 

i.e.                                                                 xct 0,0,0                                                        (3) 

At time t = 0, a contaminant with concentration oc  is added at the inlet boundary, i.e.,  

0,,0  xcct o                                                            (4) 

Further, it is assumed that for away from the source, the ground water is not contaminated, i.e.,  

 xct ,0,0                                                             (5) 

Solution of eqns. (1) subject to eqns. (3) to (5) provide the variation of contaminant concentration as 

a function of space and time. Many analytical and numerical solutions are available in literature for 

solving eqn. (1) [Ogata and Banks, (1961), Chaudhury (1993)]. Recently Pradeep Verma et al., 

(2006) developed a MacCormack scheme based numerical model for solving eqn. (1), which 

provides accurate results for wide range of Peclet numbers and is discussed below.  

 

Numerical Solution 

 

The numerical solution is carried out in two steps. First, the advective part is solved using 

MacCormack scheme to get the nodal advective concentrations in the solution domain. The nodal 

advective concentrations so obtained are used in the dispersive part as source/sink terms to obtain 

the final concentrations [Pradeep Verma et al., 2006]. The procedure is described in detail in the 

following section. 

 

Solution of the Advective Part 

Figure 1 shows the nodal representation to describe the MacCormack scheme. 
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      Figure 1 – Nodal representation of MacCormack scheme 

 

For a typical interior node ‘i’, the predictor and corrector steps of the MacCormack scheme can be 

written as: [Chaudhry (1993), Bhallamudi and Singh (1996)] 

Predictor: (Using Forward difference) 
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being the predicted concentration. (6) 

 

Corrector: (Using Backward difference) 
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is the corrector concentration. (7) 

Hence, the corrected value of advective concentration at unknown time level 1k

ia C is given by, 
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In Eqs. (6) to (8), superscript ‘k’ denotes the time level at which the solution is known and ‘k+1’ 

denotes the time level at which solution is sought, Δx is the spatial grid size and Δt is the time 

increment. For the spatial derivative, backward-differencing is used in the predictor step and 

forward-differencing is used in the corrector step. MacCormack scheme is an explicit scheme and its 

stability is governed by the Courant number   which is defined as 
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MacCormack scheme is stable for   ≤ 1. 

 

Solution of Dispersive Part: 
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The dispersive part is written as 
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For a typical interior node, a fully implicit finite difference scheme for the solution of dispersive part 

can be written as 
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It should be noted that in Eqn.(11), the advective concentration obtained from MacCormack scheme 

is used in the time derivative term which acts as sink term. Rearranging Eqn.(11) to bring all the 

unknown terms on the left hand side and all the known terms on the right hand side, one gets 
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The parameter that characterizes the effect of dispersion is the Peclet number which is defined as 

s

c
D

xu
P


                                                              (13) 

Computationally, a flow is considered to be dispersion dominated if Pc ≤ 1 and advection dominated 

if Pc ≥ 5 (Anderson, 1979).  

 

Inverse Problem 

 

Knowing the parameters aL, mD  and v  eqn. (1) can be solved either analytically or 

numerically to obtain the solute concentrations as a function of space and time. This constitutes the 

forward problem. In contrast, the inverse problem involves the estimation of the parameters La , mD  

and v   from the observed concentration data in an experiment. Inverse procedure consists of 

estimating the model parameters iteratively such that the deviation between the model predicted 

concentrations and those observed for a stipulated initial and boundary conditions, is minimized. 

Formulation of objective Function 

 The objective function (fitness function in Genetic algorithm terminology) is defined as the 

sum of the squares of difference between the models’ predicted and experimentally observed 

contaminant concentrations. If, obs
ijc  is the experimentally observed concentration at time it  and at 
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location jx , and ij
prec  is the corresponding model predicted concentrations, then the fitness function 

SSD can be defined as  
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where JI ,  is the total number of time and space observations respectively. In eqn. (14), ij
prec depend 

on the model parameters   and D  for a stipulated initial   and D  boundary conditions.  

 

Estimation of Transport Parameters  

 The parameter La , mD  and v  are estimated by minimizing the fitness function (14). In the 

present study, genetic algorithm optimization technique is used to estimate these parameters. Genetic 

algorithms are computerized search and optimization algorithms based on the mechanics of natural 

selection and natural genetics [Goldberg, 1989]. Genetic algorithms are robust search methods that 

seek to reproduce mathematically the mechanisms of natural selection and population genetics 

according to the biological processes of survival and adaptation. 

 

Genetic Representation 

 Initially, a population of parameters proportional to the total string length is generated using 

a random generator. Generally, genetic algorithms have been developed by using binary coding in 

which a string (or chromosome) is represented by a string of binary bits that can encode integers, 

real numbers. In this study, the parameters are encoded as substrings of binary digits having a 

specific length. These substrings are joined together to form longer strings representing a solution. 

The length of the substring (i) is determined according to the desired solution accuracy and is 

dependent on the range of the parameter and the precision requirement of the parameter. McKinney 

and Lin (1994), gave the relationship between the substring length and the obtainable precision as     

  1210  l

kk
kCD


                                                             (15) 

Where, ki = desired precision for the thi  parameter, i  is the substring length, kC  and kD = lower 

and upper bounds of the thk parameter, k  = index for the parameter: 

The value of thk parameter is decoded using the following equation. 
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Where kZ = value of thk parameter and jl = binary digit at the thj position in the string starting from 

right. Once the initial population is randomly generated, the fitness of each string is determined 

using eqn. (16). 

 

Reproduction 

The string generated in the initial population is chosen for participation in the reproduction 

process based on their fitness values. Many selection schemes such as deterministic sampling, 

stochastic sampling with or without replacement, stochastic tournament selection and fitness 

proportionate selection, are used for reproduction (Goldberg, 1989). In this work, the fitness 

proportionate selection is chosen, where a string is selected for the reproduction process with a 

probability proportional to its fitness. Thus the probability ip  of an individual member string i  

being selected is given by 
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where is = fitness of individual string i, and p  is the population size. The scheme is implemented 

with the simulation of a roulette wheel with its circumference marked for each string proportionate 

to the string’s fitness. The roulette wheel is rotated p times, each time selecting a copy of the string 

chosen by the roulette wheel printer. As the circumference of the wheel is marked according to a 

string’s fitness, the roulette wheel mechanism makes 
mean

i
S

S
copies of the thi  string in the re 

production where meanS  is the average fitness of the population given as 
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The string with a higher fitness value represents a larger range in the cumulative probability values, 

and hence has a higher probability of being copies into the mating pool. 
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Mating (Cross over) 

The general theory behind the cross over operation is that by exchanging important building 

blocks between two strings that perform well, the GA attempts to create new strings that preserve the 

best material from two parent strings. The cross over is a recombinant operator that selects two 

strings from the mating pool at random and cuts their bits at a randomly chosen position. This 

produces two “head” segments and two “tail” segments. The tail segments are then swapped over to 

produce two new full length strings. The number of strings participating in mating depends on cross 

over probability. If a cross over probability of pc is used, only 100 x pc percent strings in the 

population are used in the cross over operation. Cross over has a wide range of possible types, i.e., 

one point, multipoint, uniform, intermediate arithmetical and entered arithmetical (Goldberg 1989). 

The effect of cross over depends on the site at which cross over takes place. 

 

Mutation 

 

Mutation is an important process that permits new genetic material to be introduced to a 

population. A mutation probability is specified that permits random mutations to be made to 

individual genes (e.g. changing 1 to 0 and vice versa for binary GAs). Mutation operator facilities 

the convergence towards an optimal solution even if initial population is far from the optimal 

solution. The binary GAs used mutation probability at very low rates ranging from 0.001 to 0.01. 

Fig. 3 shows the flow chart of the estimation of transport parameters usually Genetic algorithms. A 

computer code is written in C language to implement the algorithm. 
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Results and Discussion 

 In order to evaluate the performance of the genetic algorithm assisted parameter estimation 

technique, hypothetical transient concentration data is generated for different values of the 

parameters La , mD  and v . For the generation of concentrations data, initially the concentration in 

groundwater is assumed to be zero. A continuous source concentration ( 0C ) of 100 mg/l is applied 

at one end of the domain and transient concentration data is generated. The data generated involve 

both advective and dispersive dominated concentration profiles. [Hari Prasad et al. 2004]. Table 1 

presents the different cases considered in the study along with the corresponding true values of the 

parameters 1La  and mD  used for generating data.     

Table 1: True values of parameters used for Concentration Data Generation 

 aL (cm) v (cm/day) Dm (cm
2
/day) 

Case 1 0.05 4 2 

Case 2 0.05 60 2 

Case 3 15 4 2 

Case 4 15 60 2 

 

 Transient concentration data is generated for all the four cases and these data is used in 

estimating the parameters using Genetic Algorithms. The genetic algorithm parameters used in 

optimization are: population size = 100; String length = 60; Number of Generations = 100; Mutation 

probability = 0.01. 

 

 Table 2 presents the parameter estimation details for the four cases considered. It is clear 

from Table 2 that the parameter estimates obtained from the Genetic algorithms are almost identical 

to the true values of the parameters. Figs. 3 to 6 show the comparison of model predicted 

concentrations using the optimum parameters with the observed concentrations for all the four cases. 

It can be seen from Figs. 3 to 6 that model predicted concentrations match very well with the 

observed concentrations resulting in minimum residual mean square error (RMS error). Thus, it can 

be concluded that genetic algorithms are robust in estimating solute transport parameters and can be 

used as an effective tool for parameter estimation.  
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Table 2: Parameter Estimates by Genetic Algorithms 

Parameter True value Estimated value 

Case 1 

aL (cm)  0.05 0.0498 

v (cm/day) 4 4.0001 

Dm (cm
2
/day) 2 2.0005 

RMS Error = 0.0032 (mg/l)
2 

Case 2 

aL (cm)  0.05 0.05001 

v (cm/day) 60 60.0007 

Dm (cm
2
/day) 2 1.9998 

RMS Error = 0.0026 (mg/l)
2 

Case 3 

aL (cm)  15 14.9997 

v (cm/day) 4 4.0003 

Dm (cm
2
/day) 2 1.9997 

RMS Error = 0.0028 (mg/l)
2 

Case 4 

aL  15 15.0003 

v  60 60.0002 

Dm  2 2.0002 

RMS Error = 0.0022 (mg/l)
2
 

 

 Conclusions 

 In the present study, the applicability of Genetic Algorithm (GA) optimization technique is 

assessed in estimating the groundwater contaminant transport parameters. For this purpose, the 

genetic algorithms technique is coupled with the McCormack scheme based numerical technique for 

solving Advection – Dispersion equation in Groundwater. The performance of the genetic algorithm 

based optimization technique is studies by estimating the transport parameters La , mD  and v  from 

synthetically generated transient concentration data. The data includes both advective and dispersive 
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dominated data. It is observed that in all the cases, parameters estimated by genetic algorithms are 

almost identical to the true values.  The results indicate that GA technique is an efficient and reliable 

technique for estimating the transport parameters. GA avoids the subjectivity, large computational 

time and ill-posed ness often associated with conventional optimization technique.        
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Fig 3 Comparison of observed and model predicted concentrations with optimum parameter 

estimates- Case I 
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Fig 4 Comparison of observed and model predicted concentrations with optimum parameter 

estimates- Case II 
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Fig 5 Comparison of observed and model predicted concentrations with optimum parameter 

estimates- Case III 

 

Fig 6 Comparison of observed and model predicted concentrations with optimum parameter 

estimates- Case IV 

 


